Earth’s core may contain vast hidden reserves of hydrogen, reshaping theories about planet’s water origins. Beneath our feet lies a hidden reservoir that could dwarf all of Earth’s oceans. The discovery could transform our understanding of how Earth formed and where its water came from.
Deep beneath the crust and mantle, at depths far beyond the reach of any drilling technology, Earth’s core stands as one of the planet’s most inaccessible realms; however, emerging research indicates that this hidden, extreme environment might conceal a remarkable secret: an immense reserve of hydrogen that could surpass the total volume of all the water in Earth’s oceans several times over. Scientists have recently suggested that the core may contain at least the equivalent of nine global oceans of hydrogen, with estimates potentially rising to as many as 45, a finding that, if validated, would position the core as Earth’s largest hydrogen reservoir and profoundly alter current ideas about the planet’s early evolution and the origins of its water.
Hydrogen, the lightest and most abundant element in the universe, plays a central role in the chemistry of life and planetary evolution. On Earth’s surface, it is primarily found bonded with oxygen in water. However, the new estimates indicate that substantial quantities of hydrogen may be locked deep within the metallic core, accounting for approximately 0.36% to 0.7% of the core’s total mass. Though this percentage may appear modest, the immense size and density of the core mean that even a fraction of a percent translates into an enormous quantity of hydrogen.
These findings carry significant implications for understanding when and how Earth acquired its water. A long-standing scientific debate centers on whether most of the planet’s water arrived after its formation through impacts from comets and water-rich asteroids, or whether hydrogen was already incorporated into Earth’s building materials during its earliest stages. The new research lends support to the latter possibility, suggesting that hydrogen was present as the planet formed and became integrated into the core during its earliest phases.
Rethinking the origins of Earth’s water
More than 4.6 billion years ago, the solar system was a turbulent environment filled with dust, gas and rocky debris orbiting a young sun. Through countless collisions and gradual accumulation, these materials coalesced into larger bodies, eventually forming the terrestrial planets, including Earth. During this formative period, the planet differentiated into layers: a dense metallic core sank toward the center, while lighter materials formed the mantle and crust above.
For hydrogen to remain in the core today, it would have had to exist during that crucial phase of planetary development, when molten metal peeled away from silicate material and sank toward the center. During this descent, hydrogen needed to blend into the liquid iron alloy that ultimately formed the core, a step possible only if the element had already been embedded in the planet’s initial constituents or delivered early enough to join the core‑forming process.
If most of Earth’s hydrogen was present from the beginning, it suggests that water and volatile elements were not merely late additions delivered by cosmic impacts. Instead, they may have been fundamental components of the materials that assembled into the planet. Under this scenario, the core would have sequestered a large portion of the available hydrogen within the first million years of Earth’s history, long before the surface oceans stabilized.
This interpretation challenges models that rely heavily on cometary bombardment as the primary source of Earth’s water. While impacts from icy bodies likely contributed some water and volatile elements, the new estimates imply that a substantial fraction of hydrogen was already embedded within the planet’s interior during its earliest stages.
Exploring a frontier long beyond reach
Studying the makeup of Earth’s core poses immense difficulties, as it starts about 3,000 kilometers below the surface and reaches the planet’s center, a realm where sun‑like temperatures and pressures millions of times greater than those at the surface prevail. Because direct sampling remains beyond today’s technological capabilities, scientists must depend on indirect investigative techniques and controlled laboratory experiments.
Hydrogen poses a particularly difficult measurement problem. Because it is the smallest and lightest element, it can easily escape from materials during experiments. Its tiny atomic size also makes it challenging to detect with conventional analytical tools. For decades, researchers attempted to infer the presence of hydrogen in the core by examining the density of iron under high pressures. The core’s density is slightly lower than that of pure iron and nickel, indicating that lighter elements must be present. Silicon and oxygen have long been considered leading candidates, but hydrogen has also been suspected.
Previous experimental strategies frequently depended on X-ray diffraction to examine how iron’s crystal lattice responds when hydrogen becomes embedded within it. As hydrogen diffuses into the atomic framework, the lattice expands in detectable ways. Yet the interpretation of these shifts has produced highly inconsistent estimates, spanning from minimal traces to exceptionally large quantities comparable to more than 100 ocean volumes. These discrepancies arose from methodological constraints and the inherent challenges of accurately reproducing genuine core conditions.
A new atomic-scale approach
To refine these estimates, researchers adopted a technique capable of observing materials at the atomic level. In laboratory experiments, they recreated the intense pressures and temperatures believed to exist in Earth’s deep interior. Using a device known as a diamond anvil cell, they compressed iron samples to extreme pressures and heated them with lasers until they melted, mimicking the molten metal of the early core.
After the samples cooled, scientists turned to atom probe tomography, a technique capable of producing near-atomic-resolution three-dimensional images and detailed chemical profiles. The materials were crafted into extremely fine, needle-shaped specimens measuring only a few dozen nanometers across. Through the use of precisely regulated voltage pulses, individual atoms were ionized and captured sequentially, allowing researchers to directly quantify hydrogen and map its distribution alongside elements like silicon and oxygen.
This method stands apart from previous techniques by directly tallying atoms instead of deducing hydrogen levels from structural variations. The experiments showed that hydrogen closely associates with both silicon and oxygen inside iron when subjected to high pressure, and the measured hydrogen-to-silicon ratio in the samples was found to be roughly one to one.
By combining this atomic-scale data with independent geophysical estimates of how much silicon resides in the core, the researchers calculated a new range for hydrogen content. Their results suggest that hydrogen accounts for between 0.36% and 0.7% of the core’s mass, translating into multiple ocean equivalents when expressed in familiar terms.
Implications for the magnetic field and planetary habitability
The presence of hydrogen within the core not only reframes existing ideas about how water reached the planet but also affects scientific views on the development of Earth’s magnetic field, as the core’s outer layer of molten metal circulates while releasing internal heat, a motion that produces the geomagnetic field responsible for protecting the planet from damaging solar and cosmic radiation.
The interplay between hydrogen, silicon and oxygen in the core could affect how heat was transferred from the core to the mantle in the planet’s early history. The distribution of light elements influences density gradients, phase transitions and the dynamics of core convection. If hydrogen played a significant role in these processes, it may have contributed to establishing the long-lived magnetic field that made Earth more hospitable to life.
Understanding how volatile elements like hydrogen are distributed also shapes wider models of planetary formation, and hydrogen — together with carbon, nitrogen, oxygen, sulfur, and phosphorus — is classified among the elements vital for life. The way these elements behave during planetary accretion dictates whether a planet acquires surface water, an atmosphere, and the chemical building blocks required for biology.
Assessing unknowns and exploring potential paths ahead
Despite the advanced nature of these new experimental techniques, some uncertainties persist. While laboratory simulations can mirror conditions in Earth’s deep interior, they cannot fully duplicate them. Moreover, hydrogen may be lost from samples during decompression, which could result in lower measured values. Additional chemical processes within the core, not entirely reflected in the experiments, might also influence hydrogen levels.
Some researchers point out that independent analyses have yielded hydrogen estimates in a comparable range, sometimes trending higher. Variations in experimental frameworks, assumptions regarding core makeup, and approaches to accounting for hydrogen loss can produce shifts in the resulting calculations. As analytical methods progress, upcoming studies may sharpen these estimates and further reduce existing uncertainties.
Geophysical observations can also offer indirect boundaries, as seismic wave analyses that uncover the core’s density and elastic behavior make it possible to assess whether suggested hydrogen levels align with recorded data, and combining laboratory findings with seismic modeling will be essential for forming a fuller understanding of the core’s overall makeup.
An expanded view of Earth’s origins
If the proposed hydrogen levels are accurate, they reinforce the view that Earth’s volatile inventory was established early and distributed throughout its interior. Rather than being a late veneer delivered solely by icy impactors, hydrogen may have been present in the primordial materials that assembled into the planet. Gas from the solar nebula, along with contributions from asteroids and comets, likely played roles of varying importance.
The idea that the core contains the majority of Earth’s hydrogen also reframes how scientists think about the distribution of water within the planet. While oceans dominate the surface visually and biologically, they may represent only a small fraction of Earth’s total hydrogen budget. The mantle likely holds more, and the core could contain the largest share of all.
This perspective emphasizes that Earth’s deep interior is not merely a static foundation beneath the crust but an active participant in the planet’s chemical and thermal evolution. The processes that unfolded during the first million years of Earth’s existence continue to influence its structure, magnetic field and capacity to support life.
As research progresses, the emerging picture is one of a planet whose defining characteristics were shaped from the inside out. By peering into the atomic architecture of iron under extreme conditions, scientists are gradually revealing how the smallest element in the periodic table may have played an outsized role in shaping Earth’s destiny.